A New Approach to Information Modeling for Manageable
Component-Based, Active, and Autonomous Service Provisioning

Vladimir Tosic, Bernard Pagurek
Department of Systems and Computer Engineering
Carleton University, Ottawa
e-mail: vladimir,bernie@sce.carleton.ca

Abstract: We present anew approach to information modeling for application and service management
of computer systems and communication networks. The motivation for our work is that existing approaches
to service management show limitations in addressing challenges of emerging trends in service provision-
ing. One of the challengesisthat service provisioning is becoming increasingly component-based with pos-
sibly complex and dynamic relationships between involved service providing entities. Thereisaso a strong
trend for provisioning of differentiated services to different classes of clients. Further, features like distrib-
uted and dynamic service composition and autonomous reconfiguration require additiona flexibility and
adaptability of service provisioning systems, as well as further reduction of human involvement in service
provisioning and management. Also, as computer systems and communication networks converge, thereis
a strong need for unified management of computer applications and communication services. The core of
our approach isto extend object-oriented information modeling of services with the specification of views.
In our approach, a service component provides some service functionality that is described using standard
object-oriented concepts. In addition, every service component can offer one or more views describing
conditions on usage of this functionality. A view contains formal specification of functional constraints
(preconditions, postconditions, and invariants), quality of service (QoS) constraints (QoS required from
underlying services and QoS guarantees to clients), and authorization policies. As more than one view can
be specified for a service component, views can be used for specification of differentiated services to dif-
ferent classes of clients. In order to achieve easier and more consistent specification of views, we organize
views of the same service component into single-inheritance hierarchies. We also introduce several view-
related features that support dynamic (e.g., run-time) adaptation to changes in the environment (e.g., QoS
of underlying services). Fird, clients can dynamically switch between different views of the same service
component. Second, hew views for the existing service functionality can be created dynamicaly. Third, a
service component can dynamically deactivate (i.e, disable) a view and, eventually, re-activate it later.
Compared with aternatives, our approach promises both easer dynamic composition of differentiated
services from service components and increased flexibility and adaptability of resulting solutions. We are
working further on defining new flexible and adaptable application and service management architectures
and algorithms that are based on information modeling using the concept of views.

Biography: Vladimir Tosic is currently a Ph.D. student at the Department of Systems and Computer
Engineering, Carleton University, Ottawa working under supervision of Prof. Bernard Pagurek in the area
of application and service management. His research interests also include component-based software en-
gineering, management of distributed computer and communication systems, mobile and intelligent agents.
Vladimir received his Dipl.Ing. degree in Electrical Engineering (Computer Science and Engineering
stream) from University of Nis, Yugosavia After graduation he worked for one year as an intern at the
OpenView Software Division of Hewlett-Packard Company in Germany. He completed his M.Eng. thesis
in Electrical Engineering (Computer Science and Engineering stream) through a collaboration of University
of Nis, Yugoslavia and the OpenView Software Division of Hewlett-Packard Company. For his academic
successes Vladimir received a number of awards, including Epstein Scholarship in 2000, the "1996 Nikola
Teda Youth Crestivity Award" from Nikola Tesla Foundation, Yugodsavia, and the "Best Graduating Stu-
dent of the University of Nisin 1995/1996" awards. VIadimir authored or co-authored about twenty papers.
Heis a student member of the IEEE (including Computer and Communications societies) and the ACM.
For further information about his research contact him at vladimir@sce.carleton.ca or visit his WWW page
http://www.sce.carl eton.ca/~vladimir/index.html.

\Gite
A New Approach to I nformation Modeling

for Manageable Component-Based, Active,
and Autonomous Service Provisioning

Vladimir Tosic, Bernard Pagurek
Department of Systems &
Computer Engineering
Carleton University, Ottawa
{vladimir,bernie}@sce.carleton.ca

Outline

O Introduction - trends in service provisioning
[0 Motivation for this work

[0 Description of the concept of views

[0 Features increasing flexibility and adaptability
O Why not alternatives?

O Implementation issues

[0 Conclusions and future work

Cile

Some Trends in Service
Provisioning

O Convergence of computer applications and
communication services
O the need for unified management
[0 Component-based service provisioning
O may result in complex and dynamic relationships
[Differentiated services for different classes of
clients
O computer systems: personalization

Cile

Some Trends in Service
Provisioning (cont.)

OIncreased distribution and dynamism
Cusage of active technologies
Ofrequent disturbances in wireless systems
OThe need for increased flexibility and
adaptability (with reduction of human
involvement)
Odistributed and dynamic service composition
Oautonomous reconfiguration
[0QoS management at the application level

Motivation for This Work

O Existing approaches to service composition
and service management show limitations
in addressing challenges of emerging
trends in service provisioning

[OWe believe that a new approach to
information modeling of software and
service components can help to enable
easier service composition and more
flexible and adaptable service management

Cile

Service Components

[JA service component is a nearly independent
and replaceable part of the system that
provides a set of well-defined services

O Examples: distributed objects, software
components, telecommunication services
encapsulated in software modules, ...

O Functionality can be described using object-
oriented and component-based concepts

[0Service component instances and service
component types (classes)

Cile

The Concept of Views

OThere is also a need to describe non-
functional aspects, i.e. conditions of usage
OA view contains a formal specification of:

Ofunctional constraints (pre- and postcondtions,
invariants)

QoS constraints (QoS required from underlying
services and QoS guaranteed to clients)

Oauthorization policies (defining access rights)

\Gite
Specification of Differentiated
Services Using Views

[OViews are specified separately from the
functionality to which they refer

O more than one view can be specified for the same service
component type

O a client may use different views for different instances of
the same service component type

[0 A client can open sessions with a service component

O possibly more than one session (maybe with different
views) with the same service component

[1Some of the constraints can be used in view
trading or in component instance trading

Hierarchical Organization of
Views

OIn order to achieve easier and more
consistent specification of views

[0Single-inheritance hierarchy per service
component type

[(Inheritance and redefinition of constraints
from superviews

O“OR" for preconditions, QoS requirements,
authorization policies

O“AND” for postconditions, invariants, QoS
guarantees

\Gite
Example - Object Trader

interface Trader {
Object[] find(Object attribute); view TraderPriorityClient extends
void add(Object attribute, Object item); TraderClient {
/* ... other methods */ find.Postcondition:
}; // end interface Trader responseTime.value<=2;
}; // end view TraderPriorityClient
view TraderClient on Trader {
find.Authorization: true; view TraderManager extends
find.QoSParameters: responseTime; TraderPriorityClient {

find.Postcondition: responseTime.name add.Authorization: true;
== “response time (including service)” add.Precondition: not (item in

&& responseTime.unit == "ms” find(attribute));

&& responseTime.value<=>5; add.Postcondition: item in
add.Authorization: false; find(attribute);
/* ... constraints for other methods */ /* ... constraints for other methods */

Y; // end view TraderClient }; // end view TraderManager

Features Increasing Flexibility
and Adaptability |

[0Support for dynamic adaptations (e.g., to
changes in the environment like QoS of
underlying services)

DA client may be allowed to dynamically
switch between views of the same service
component without changing the session

OExample: A client dynamically decides that
better QoS is needed

OThe service component checks restrictions

<ite Features Increasing Flexibility
and Adaptability Il

O Dynamic creation of new views for existing
service component instances

OThis is not creation of new functionality, but
of new offerings of existing functionality!

O Due to possible conflicts, a strict control of
dynamic creation of views is needed

O Example: Subviews differing in QoS can be
defined dynamically from the same superview
that defines functional constraints and
authorization policies

Features Increasing Flexibility
and Adaptability Il

[JA service component instance need not
support all views defined for its service
component type all the time

O Example: High guaranteed QoS cannot be
achieved all the time

[JA service component instance may be
allowed to dynamically activate/deactivate
support for some views

OIf a view is deactivated, its subviews are not
automatically deactivated

Using Views: Deactivation of a
View Used by Some Clients

O Automatically switch to the first active
superview

[1Emit an event to all affected clients
[1Clients can decide what to do next

OWhen the original view is reactivated, if a
client has not explicitly switched views, that
view should be restored

OThis algorithm helps in fast autonomous
adaptation

\Gite
Why Not Alternatives?

OMultiple service component instances differing
in constraints - redundancy, not always
applicable, less flexible

[0 Adapters (including roles, contracts, wrappers,
proxies) with different constraints - more error-
prone, harder to manage, without automatic
code generation

O Multiple functional interfaces - no formal
specification of constraints, possibility of
conflicts, less flexible

\Gite
Why Not Alternatives? (cont.)

[1Q0oS specification languages (e.g., QML, QDL) -
address only QoS issues, no wide acceptance

O Policy-driven management - does not address
functional and QoS constraints, top-down
approach, policy refinement and policy conflicts
are serious problems

OTINA (Telecommunications Information
Networking Architecture) - too complex, not
fully component-based, multiple interfaces, no
formal specification of constraints (except QoS)

Cile

Implementation Issues

OThis work is compatible with modern
software engineering technologies

Odistributed object technologies like CORBA
(Common Object Request Broker Architecture)
and Java RMI (Remote Method Invocation)

Ocomponent architectures like the CORBA
Component Model and Enterprise JavaBeans

[Extends the well-known design by contract
software engineering approach
O Experience and some tools can be reused

Cile

Conclusions and Future Work

OThe concept of views can be beneficial in
achieving both easier dynamic composition
of differentiated services from service
components and increased flexibility and
adaptability of resulting solutions

OThis cannot always be achieved using
alternative solutions

OWork continues on defining new flexible and
adaptable application and service
management architectures and algorithms

